Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.115
Filtrar
2.
Zhongguo Gu Shang ; 37(4): 374-80, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38664208

RESUMEN

OBJECTIVE: To analyze the correlation between hip joint musculoskeletal ultrasound score and ankylosing spondylitis (AS) disease activity, as well as to investigate the value of high frequency ultrasound in the assessment of hip joint involvement in AS. METHODS: The clinical data of 244 patients with AS who were treated in the rheumatology department of from March 2019 to March 2022 were retrospectively analyzed. Among them, there 174 males and 70 females, aged from 19 to 58 years old with an average of (34.22±9.49) years old;the disease duration of AS patients ranged from 8 months to 26 years, with an average of (13.68±4.04) years.The 244 patients were divided into disease group (83 cases) and control group (161 cases) based in the presence of hip joint involuement. According to the the disease activity, patients in the disease group were further categorezed into active phase (45 cases) and stable phase (38 cases). The ultrasound scores of patients in the active and stable phases of the disease group and the control group were compared. Relevant factors of hip joint involvement in AS patients were analyzed, and analyze the correlation between ultrasound score and Bath ankylosing spondylitis disease activity score index(BASDAI), Bath ankylosing spondylitis functional index(BASFI), visual analogue score of pain (VAS), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and the correlation between hip joint capsule score and tendon attachment end score and BASDAI, BASFI, VAS, CRP and ESR. RESULTS: The hip joint capsule score(3.06±1.12), femoral head score(1.45±0.43), tendon attachment end score(3.28±1.30) and total ultrasound score(6.65±2.31) of the disease group were higher than those of the control group(1.51±0.48)、(0.66±0.27)、(1.61±0.53)、(3.81±1.44)scores (P<0.05). Multifactor Logstic regression analysis showed that the course of disease, hip joint capsule score and total ultrasound score were independent risk factors for hip involvement in AS patients.The hip capsule score (3.65±1.22)and total ultrasound score(8.28±2.33) in the active phase of the disease group were higher than those in the stable phase (2.48±1.04)、( 6.82±1.96)scores(P<0.05). The hip joint capsule score and total ultrasonic score of AS patients were positively correlated with BASDAI, BASFI, VAS, CRP, and ESR (P<0.05, P<0.01).The score of tendon attachment end was positively correlated with CRP (P<0.05). The score of joint capsule effusion in AS patients was positively correlated with BASDAI, BASFI and VAS (P<0.05, P<0.01). The synovial blood flow score was positively correlated with BASDAI, VAS, CRP and ESR (P<0.05, P<0.01). The synovial thickening score was positively correlated with BASDAI, BASFI, VAS, CRP and ESR (P<0.05, P<0.01). There was no correlation between the score of tendon attachment end and BASDAI, BASFI, VAS, CRP and ESR. CONCLUSION: There is a correlation between hip joint ultrasonic score of hip joint and clinical indexes in AS patients.Hip joint capsule score and total ultrasonic score were independent risk factors for hip involvement in AS patients. High frequency ultrasound exhibits clinical value in the diagnosis of hip joint involvement in AS patients.


Asunto(s)
Articulación de la Cadera , Espondilitis Anquilosante , Ultrasonografía , Humanos , Espondilitis Anquilosante/diagnóstico por imagen , Masculino , Femenino , Adulto , Persona de Mediana Edad , Articulación de la Cadera/diagnóstico por imagen , Adulto Joven , Estudios Retrospectivos
3.
Front Cell Dev Biol ; 12: 1259953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665432

RESUMEN

Introduction: Metastasis is a major cause of cancer-related deaths, underscoring the necessity to discern the rules and patterns of cancer cell spreading. Epithelial-mesenchymal plasticity contributes to cancer aggressiveness and metastasis. Despite establishing key determinants of cancer aggressiveness and metastatic ability, a comprehensive understanding of the underlying mechanism is unknown. We aimed to propose a classification system for cancer cells based on epithelial-mesenchymal plasticity, focusing on hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Methods: We extensively reviewed the concept of epithelial-mesenchymal plasticity, specifically considering the hysteresis of the epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype. Results: In this review and hypothesis article, based on epithelial-mesenchymal plasticity, especially the hysteresis of epithelial-mesenchymal transition and the hybrid epithelial/mesenchymal phenotype, we proposed a classification of cancer cells, indicating that cancer cells with epithelial-mesenchymal plasticity potential could be classified into four types: irreversible hysteresis, weak hysteresis, strong hysteresis, and hybrid epithelial/mesenchymal phenotype. These four types of cancer cells had varied biology, spreading features, and prognoses. Discussion: Our results highlight that the proposed classification system offers insights into the diverse behaviors of cancer cells, providing implications for cancer aggressiveness and metastasis.

4.
Open Med (Wars) ; 19(1): 20240951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623457

RESUMEN

Objective: In the present study, we investigated the impact of left atrial appendage closure (LAAC) following catheter ablation (CA) on the left atrial structure and functioning of patients with paroxysmal atrial fibrillation (AF). Methods: Patients with paroxysmal AF were enrolled in this single-center prospective cohort study between April 2015 and July 2021; 353 patients received CA alone, while 93 patients received CA in combination with Watchman LAAC. We used age, gender, CHA2DS2-VASc, and HAS-BLED scores as well as other demographic variables to perform propensity score matching. Patients with paroxysmal AF were randomly assigned to the CA combined with Watchman LAAC group (combined treatment group) and the simple CA group, with 89 patients in each group. The left atrial structure, reserve, ventricular diastole, and pump functions and their changes in patients were assessed using routine Doppler echocardiography and 2D speckle tracking echocardiography over the course of a 1-year follow-up. Results: At 1-week follow-up, the reserve, ventricular diastole, and pump functions of the left atrium (LA) increased in both groups; these functions were gradually restored at the 1- to 3-month follow-up; they were close to or returned to their pre-operative levels at the 3-month follow-up; and no significant differences were found compared with the pre-operative levels at the 12-month follow-up. In the first 3 months, the reserve (Ƹ, SRs) and pump functions (SRa) in the combined treatment group decreased significantly when compared with the simple CA group, and the differences were statistically significant. Conclusion: Patients with paroxysmal AF may experience a short term, partial effect of LAAC on LA reserve and pump functions, which are gradually restored and the effect disappears by 12 months.

5.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578828

RESUMEN

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Asunto(s)
Aminopiridinas , Inhibidores de Histona Desacetilasas , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Humanos , Ratones , Benzamidas/farmacología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Histona Desacetilasa 1/metabolismo
6.
Front Plant Sci ; 15: 1371435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660445

RESUMEN

Introduction: Low-light-stress is a common meteorological disaster that can result in slender seedlings. The photoreceptors play a crucial role in perceiving and regulating plants' tolerance to low-light-stress. However, the low-light-stress tolerance of cucumber has not been effectively evaluated, and the functions of these photoreceptor genes in cucumber, particularly under low-light-stress conditions, are not clear. Methods: Herein, we evaluated the growth characteristics of cucumber seedlings under various LED light treatment. The low-light-stress tolerant cucumber CR and intolerant cucumber CR were used as plant materials for gene expression analysis, and then the function of CsCRY1 was analyzed. Results: The results revealed that light treatment below 40 µmol m-2 s-1 can quickly and effectively induce low-light-stress response. Then, cucumber CR exhibited remarkable tolerance to low-light-stress was screened. Moreover, a total of 11 photoreceptor genes were identified and evaluated. Among them, the cryptochrome 1 (CRY1) had the highest expression level and was only induced in the low-light sensitive cucumber CS. The transcript CsaV3_3G047490.1 is predicted to encode a previously unknown CsCRY1 protein, which lacks 70 amino acids at its C-terminus due to alternative 5' splice sites within the final intron of the CsCRY1 gene. Discussion: CRY1 is a crucial photoreceptor that plays pivotal roles in regulating plants' tolerance to low-light stress. In this study, we discovered that alternative splicing of CsCRY1 generates multiple transcripts encoding distinct CsCRY1 protein variants, providing valuable insights for future exploration and utilization of CsCRY1 in cucumber.

7.
World J Gastrointest Oncol ; 16(4): 1500-1513, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38660641

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide, and its development comprises a multistep process from intraepithelial neoplasia (IN) to carcinoma (CA). However, the critical regulators and underlying molecular mechanisms remain largely unknown. AIM: To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention. METHODS: A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide (4NQO) to C57BL/6 mice. Moreover, we established a control group without 4NQO treatment of mice. Then, transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses, including low-grade IN (LGIN), high-grade IN (HGIN), and CA, and controlled normal tissue (NOR) samples. Differentially expressed genes (DEGs) were identified in the LGIN, HGIN, and CA groups, and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The CIBERSORT algorithm was used to detect the pattern of immune cell infiltration. Immunohistochemistry (IHC) was also conducted to validate our results. Finally, the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice. RESULTS: Compared with those in the NOR group, a total of 681541, and 840 DEGs were obtained in the LGIN, HGIN, and CA groups, respectively. Using the intersection of the three sets of DEGs, we identified 86 genes as key genes involved in the development of ESCC. Enrichment analysis revealed that these genes were enriched mainly in the keratinization, epidermal cell differentiation, and interleukin (IL)-17 signaling pathways. CIBERSORT analysis revealed that, compared with those in the NOR group, M0 and M1 macrophages in the 4NQO group showed stronger infiltration, which was validated by IHC. Serum cytokine analysis revealed that, compared with those in the NOR group, IL-1ß and IL-6 were upregulated, while IL-10 was downregulated in the LGIN, HGIN, and CA groups. Moreover, the expression of the representative key genes, such as S100a8 and Krt6b, was verified in external human samples, and the results of immunohistochemical staining were consistent with the findings in mice. CONCLUSION: We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions. In addition, we found that macrophage infiltration and abnormal alterations in the levels of inflammation-associated cytokines, such as IL-1ß, IL-6, and IL-10, in the peripheral blood may be closely associated with the development of ESCC.

8.
Brain Behav ; 14(4): e3486, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648391

RESUMEN

BACKGROUND: Evidence from observational studies and clinical trials suggests an association between periodontal disease and Alzheimer's disease (AD). However, the causal relationship between periodontal disease and AD remains to be determined. METHODS: We obtained periodontal disease data from the FinnGen database and two sets of AD data from the IEU consortium and PGC databases. Subsequently, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between periodontal disease and AD. RESULTS: The results of the random-effects IVW analysis revealed no evidence of a genetic causal relationship between periodontal disease and AD, regardless of whether the AD data from the IEU consortium or the AD data from the PGC database were utilized. No heterogeneity, multiple effects of levels, or outliers were observed in this study. CONCLUSIONS: Our findings indicate that there is no causal relationship between periodontal disease and AD at the genetic level.

9.
Mol Hortic ; 4(1): 15, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649966

RESUMEN

The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.

10.
Toxics ; 12(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38668497

RESUMEN

Particulate matter of size ≤ 2.5 µm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.

11.
J Chromatogr A ; 1722: 464857, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569445

RESUMEN

Epimer separation is crucial in the field of analytical chemistry, separation science, and the pharmaceutical industry. No reported methods could separate simultaneously epimers or even isomers and remove other unwanted, co-existing, interfering substances from complex systems like herbal extracts. Herein, we prepared a heptapeptide-modified stationary phase for the separation of 1R,2S-(-)-ephedrine [(-)-Ephe] and 1S,2S-(+)-pseudoephedrine [(+)-Pse] epimers from Ephedra sinica Stapf extract and blood samples. The heptapeptide stationary phase was comprehensively characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The separation efficiency of the heptapeptide column was compared with an affinity column packed with full-length ß2-AR functionalized silica gel (ß2-AR column). The binding affinity of the heptapeptide with (+)-Pse was 3-fold greater than that with (-)-Ephe. Their binding mechanisms were extensively characterized by chromatographic analysis, ultraviolet spectra, circular dichroism analysis, isothermal titration calorimetry, and molecule docking. An enhanced hydrogen bonding was clearly observed in the heptapeptide-(+)-Pse complex. Such results demonstrated that the heptapeptide can recognize (+)-Pse and (-)-Ephe epimers in a complex system. This work, we believe, was the first report to simultaneously separate epimers and remove non-specific interfering substances from complex samples. The method was potentially applicable to more challenging sample separation, such as chiral separation from complex systems.


Asunto(s)
Efedrina , Seudoefedrina , Receptores Adrenérgicos beta 2 , Efedrina/química , Seudoefedrina/química , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Simulación del Acoplamiento Molecular , Ephedra sinica/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Humanos , Estereoisomerismo , Oligopéptidos/química , Oligopéptidos/aislamiento & purificación
12.
Biosci Rep ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639057

RESUMEN

The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared to normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12 and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways respectively in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38640908

RESUMEN

Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair. In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay. In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.

14.
Plant Sci ; : 112089, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640973

RESUMEN

Accurate nucleocytoplasmic transport of signal molecules is essential for plant growth and development. Multiple studies have confirmed that nucleocytoplasmic transport and receptors are involved in regulating plant disease resistance responses, however, little is known about the regulatory mechanism in plants. In this study, we showed that the mutant of the importin beta-like protein SAD2 exhibited a more susceptible phenotype than wild-type Col-0 after treatment with Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) experiments demonstrated that SAD2 interacts with the hypersensitive response (HR)-positive transcriptional regulator MYB30. Subcellular localization showed that MYB30 was not fully localized in the nucleus in sad2-5 mutants, and western-blot experiments further indicated that SAD2 was required for MYB30 nuclear trafficking during the pathogen infection process. A phenotypic test of pathogen inoculation demonstrated that MYB30 partially rescued the disease symptoms of sad2-5 caused by Pst DC3000, and that MYB30 worked downstream of SAD2 in plant pathogen defense. These results suggested that SAD2 might be involved in plant pathogen defense by mediating MYB30 nuclear trafficking. Taken together, our results revealed the important function of SAD2 in plant pathogen defense and enriched understanding of the mechanism of nucleocytoplasmic transport-mediated plant pathogen defense.

15.
Nat Mater ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641696

RESUMEN

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

16.
Front Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644399

RESUMEN

Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe-/- mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRß with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRß. Inhibiting OTUB1 in VSMCs could promote PDGFRß degradation via the ubiquitin-proteasome pathway, so it was beneficial in preventing VSMCs' phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs' phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.

17.
Adv Sci (Weinh) ; : e2307639, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626369

RESUMEN

Regulating nuclear export precisely is essential for maintaining mRNA homeostasis and impacts tumor progression. However, the mechanisms governing nuclear mRNA export remain poorly elucidated. Herein, it is revealed that the enhanced hypoxic long no-ncoding RNA (lncRNA prostate cancer associated transcript 6 (PCAT6) in breast cancer (BC) promotes the nuclear export of m6A-modified mRNAs, bolstering breast cancer stem cells (BCSCs) stemness and doxorubicin resistance. Clinically, hypoxic PCAT6 correlates with malignant BC features and poor prognosis. Mechanically, PCAT6 functions as a scaffold between interferon-stimulated gene 15 (ISG15) and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), leading to ISGylation of hnRNPA2B1, thus protecting hnRNPA2B1 from ubiquitination-mediated proteasomal degradation. Interestingly, as an m6A reader, hnRNPA2B1 selectively mediates m6A-tagged mRNAs nuclear export via the Aly/REF export factor (ALYREF)/ nuclear RNA export factor 1 (NXF1) complex, which promotes stemness-related genes expression. HnRNPA2B1 knockdown or mRNA export inhibition can result in the retention of nuclear m6A-tagged mRNA associated with stemness maintenance, which suppresses BCSCs self-renewal and effectively improves the efficacy of doxorubicin therapy. These findings demonstrate the pivotal role of m6A-modified mRNA nuclear export in BC progression, highlighting that the inhibition of m6A-tagged mRNA and its nuclear export is a potential therapeutic strategy for the amelioration of cancer chemotherapy.

18.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557192

RESUMEN

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Asunto(s)
Adenosina Trifosfatasas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Ratas , Ratones , Animales , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Línea Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores Androgénicos , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
19.
ACS Appl Mater Interfaces ; 16(15): 18400-18410, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38576193

RESUMEN

Drug-resistant bacterial infection and biofilm formation are the key inhibitors of wound healing, and new strategies are urgently needed to address these issues. In this study, we designed a pH-responsive co-assembled peptide hydrogel to inhibit Methicillin-resistant Staphylococcus aureus (MRSA) infection and promote wound healing. We synthesized a cationic short peptide (Nap-FFKKK) and a co-assembled hydrogel with curcumin at pH ∼ 7.8. The loaded curcumin was continuously released in a weak acid environment (pH ∼ 5.5). The lysine-rich cationic peptide inhibited biofilm formation in MRSA via electrostatic interaction with the negatively charged bacterial cell surface and, thus, provided a reinforcing antibacterial effect with curcumin. In vitro antibacterial experiments showed that the co-assembled system considerably reduced the minimum inhibitory concentration of curcumin against MRSA by 10-fold and promoted wound healing in a mouse model of MRSA-infected wounds. This study provides a simple and promising strategy to treat drug-resistant bacterial infections in wounds.


Asunto(s)
Infecciones Bacterianas , Curcumina , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratones , Hidrogeles , Antibacterianos , Péptidos , Cicatrización de Heridas , Concentración de Iones de Hidrógeno
20.
Nano Lett ; 24(14): 4158-4164, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557108

RESUMEN

As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...